Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 10813-10821, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359411

RESUMO

Hydrogel, recognized as a promising biomaterial for tissue engineering, possesses notable characteristics, including high water uptake, an interconnected porous structure, and excellent permeability. However, the intricate task of fabricating a hierarchically macro-micronanoporous structure, essential for providing adequate space for nutrient diffusion and cell growth within hydrogels, remains a formidable challenge. In response to these challenges, this study introduces a sustainable and straightforward three-dimensional (3D) foaming printing strategy to produce hierarchically macro-micronanoporous hydrogels (HPHs) without the utilization of porogens and post-etching process. This method entails the controlled generation of air bubbles within the hydrogels through the application of optimal mechanical stirring rates. Subsequent ultraviolet (UV) cross-linking serves to effectively stabilize the macropores within the HPHs. The resulting hierarchically macro-micronanoporous structures demonstrate a substantial improvement in the viability, adhesion, and proliferation of human umbilical vein endothelial cells (HUVECs) when incubated with the hydrogels. These findings present a significant advancement in the fabrication of hierarchically macro-micronanoporous hydrogels, with potential applications in the fields of tissue engineering and organoid development.


Assuntos
Biomimética , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Engenharia Tecidual/métodos , Células Endoteliais da Veia Umbilical Humana , Proliferação de Células , Impressão Tridimensional , Tecidos Suporte/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...